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Recently published graph neural networks (GNNs) show promising performance at social event detection tasks. However,
most studies are oriented toward monolingual data in languages with abundant training samples. This has left the common
lesser-spoken languages relatively unexplored. Thus, in this work, we present a GNN-based framework that integrates
cross-lingual word embeddings into the process of graph knowledge distillation for detecting events in low-resource language
data streams. To achieve this, a novel cross-lingual knowledge distillation framework, called CLKD, exploits prior knowledge
learned from similar threads in English to make up for the paucity of annotated data. Specifically, to extract sufficient useful
knowledge, we propose a hybrid distillation method that consists of both feature-wise and relation-wise information. To
transfer both kinds of knowledge in an effective way, we add a cross-lingual module in the feature-wise distillation to eliminate
the language gap and selectively choose beneficial relations in the relation-wise distillation to avoid distraction caused by
teachers’ misjudgments. Our proposed CLKD framework also adopts different configurations to suit both offline and online
situations. Experiments on real-world datasets show that the framework is highly effective at detection in languages where
training samples are scarce.
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1 INTRODUCTION
The task of social event detection aims to extract information about important and often newsworthy, real-
world occurrences from social media data streams [1]. It benefits greatly in fields like marketing, disaster risk
management, public opinion analysis, and decision-making. Due to its wide applications, social event detection
has been the research hot spot for the last decade. When this task first comes to the fore, most studies on the
subject treat event detection as either an incremental clustering problem [1, 38, 54, 85], a community detection
problem [25, 44–46, 84], or a topic modeling problem [7, 16, 20, 89]. However, in using these approaches, scholars
are ignoring much of the rich semantics and structural information social streams contain. Hence, more recently,
researchers have turned to the expressive power of graph neural networks (GNNs) [18, 69] – both homogeneous
and heterogeneous – to capture this information [11, 21, 58, 60, 61, 63, 64]. Among these new approaches,
one called KPGNN [11] has successfully addressed the incremental detection of events in Twitter data from a
knowledge-preserving perspective.

This is tremendous progress, but there are still questions to be answered. For instance, in general, GNN-based
event detection [11, 58, 60] is oriented toward monolingual data where there are ample instances for training (i.e.,
high-resource languages), particularly English. What can we do for languages where training samples are scarce?
As events and news are not limited to widely spoken languages. People speaking low-resource languages also
deserve access to relevant and timely information. Developing methods that can handle low-resource languages
ensures a more inclusive and global perspective in event detection and media monitoring. Thus, there is an urge
demand to strengthen detection capabilities in low-resource languages.

Turning to the low-resource language problems, though multilingual models such as M-BERT from BERT [23]
and XLM-R [19] and mT5 [79] have certain abilities to handle them, their results are still far from satisfactory. One
of the main limitations of multilingual models in handling less-spoken languages lies in the underrepresentation
of low-resource languages in the subword vocabulary and the common vector space [17]. For this, we opt to
leverage cross-lingual word embeddings (CLWE) to solve low-resource language detection problems. As shown
in Fig. 1, we aim to leverage knowledge learned from high-resource languages to strengthen detection capabilities
in low-resource languages. Our method can be referred to as cross-lingual knowledge distillation. This concept
draws inspiration from cross-modal knowledge distillation, as proposed in work [31]. In cross-modal knowledge
distillation, priors from a model trained with a more robust modality (referred to as the "teacher") are used
to guide the segmentation of another model trained with a less reliable modality (referred to as the "student")
by aligning their predicted distributions. Usually, the superior modality should have an adequate amount of
high-quality data while the student modalities only have access to small or poor-quality datasets. Despite their
tremendous variations and diversity, languages do share some things in common. For us, the superior “teacher”
modality is English, while the weak “student” modality is the low-resource language – more specifically, in our
experiments, these are Arabic and French. Hence, we propose a cross-lingual knowledge distillation (CLKD)
framework that leverages the prior knowledge learned from a high-resource language (i.e. English) to make up
for a lack of annotated samples in the low-resource languages (i.e. Arabic and French). Meanwhile, to guarantee
effective and beneficial guidance during the training process of student models, in CLKD, we carefully consider
the two key factors of distillation: what knowledge is helpful for the final detection and how to effectively transfer
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Fig. 1. An illustration of the cross-lingual knowledge distillation framework. We utilize the priors learned from the
teacher model pre-trained on teacher language data to segment the student model trained on student language data. To
transfer sufficient information that helps detection, the distillation knowledge includes two parts: 1) the learned output
features of the teacher model, and 2) the selected beneficial relations extracted by the teacher model.

knowledge. Most previous studies that apply KD in detection tasks [15, 22, 29, 77] directly treat the teacher’s
representations of a hidden or the last layer as extra supervision. Nevertheless, due to the existence of language
discrepancy, the exact match of features may be detrimental. Thus, as demonstrated in Fig. 1, in our work,
when transferring output, we also add the cross-lingual module to alleviate discrepancy. Besides, some recent
works [28, 56, 71, 76] argue that representation itself is not informative enough. To get sufficient knowledge,
they propose relational knowledge distillation. However, these methods often take a large time consumption and
ignore the mispredictions made by the teacher, which may disturb the training of students. We solve this problem
by establishing contrasting activation criteria for negative pairs and positive pairs to transfer only beneficial
relations.

Our proposed CLKD framework also adopts different configurations to suit both offline and online situations.
As shown in Fig. 4(a), this is an offline solution that combines CLWE with knowledge distillation and follows
a Teacher-Student structure – offline because traditional Teacher-Student knowledge distillation requires a
two-stage training strategy that does not suit online situations. As aforementioned, before inputting student
language samples into the pre-trained teacher model, we leverage the cross-lingual module to alleviate the
difficulties caused by language discrepancy. To remove distractions caused by misjudgments from the teacher
model, only beneficial relations are transferred. The framework also incorporates a Mutual-Learning structure
that follows a one-stage learning strategy, which allows it to be applied to detect events in an incremental setting.
As shown in Fig. 4(b), the online mutual distillation thoroughly exploits language-shared knowledge through
mutual instruction between two GNN peers to facilitate each network learning. The distillation works in both
directions.
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Experimental results demonstrate the superiority of our models in detecting events from low-resource language
data. Specifically, to evaluate the CLKD framework for low-resource transfer scenarios, we use three publicly-
available datasets of Twitter data – English [49], French [48], and Arabic [2]. The results show that our CLKD
framework, which relies on prior knowledge from English, substantially improves detection in French and Arabic.
Note that all code and data used for these tests are publicly available from Github1. The main contributions of
this paper therefore include:
(1) A novel cross-lingual knowledge distillation (CLKD) framework for social event detection in low-resource

languages. This framework effectively integrates cross-lingual word embeddings into the graph knowledge
distillation process. It successfully detects events in a low-resource language by borrowing prior knowledge
from a high-resource language (i.e., English).

(2) A hybrid graph knowledge distillation strategy. This strategy takes into account both feature-wise and
relation-wise information and focuses on how to effectively transfer them. In feature-wise distillation, we
add a cross-lingual module to tackle language discrepancy. In relation-wise distillation, we only transfer
beneficial relations by establishing contrasting activation criteria for negative pairs and positive pairs in
those carefully selected triplets.

(3) Experimental results on two real-world datasets – one in French and one in Arabic demonstrate that the
performance of social event detection can be greatly improved in situations of data paucity by combining a
GNN model with cross-lingual knowledge distillation into a CLKD framework.

The rest of the paper is organized as follows. We first give the preliminaries in Section 2. Second, we present
the CLKD framework in Section 3. Third, we evaluate the proposed models in Section 4. Fourth, we describe the
extensions and limitations of our work in Section 5. Then, we introduce the related work in Section 6. Finally, we
conclude this study and discuss the future works in Section 7.

2 PRELIMINARY
This section sets out the main notations used in this paper, as shown in Table I. Similar to work [11], we first
describe the definitions of Social Stream and Social Event, then give the definition of Social Event Detection and
of significant importance, Cross-lingual Social Event Detection.

Definition 2.1. A social stream 𝑆 = 𝑀0, ..., 𝑀𝑖−1, 𝑀𝑖 , ... is a continuous and temporal sequence of blocks of
social messages. Each block𝑀𝑖 contains messages that arrive during a certain period, i.e.,𝑀𝑖 = {𝑚 𝑗 |𝑡𝑚 𝑗

∈ [𝑡𝑖 , 𝑡𝑖+1)},
where 𝑡𝑚 𝑗

denotes the posted time of message𝑚 𝑗 . 𝑡𝑖 and 𝑡𝑖+1 are the split beginnig time and ending time of block𝑀𝑖 .

Definition 2.2. A low-resource social event 𝑒 in a social stream is a set of correlated messages that discuss
the same real-world happening in a less-spoken language, i.e., 𝑒 = {𝑚 𝑗 |𝑒𝑚 𝑗

= 𝑒}, where 𝑒𝑚 𝑗
denotes the event which

message𝑚 𝑗 belongs to. In this work, it is assumed that each message discusses at most one event.

Definition 2.3. A social event detection algorithm learns a model 𝑓 (𝑀𝑖 ;𝜃 ), where 𝜃 denotes the parameters in
the network, and𝑀𝑖 denotes a message block containing a set of social events 𝑒 .

Definition 2.4. For cross-lingual social event detection, priors learned from a high-resource language are
used to segment the performance of a low-resource language. The message block in the high-resource language is
denoted as𝑀ℎ

𝑖 and as𝑀𝑙
𝑖 for the low-resource language. Both𝑀ℎ

𝑖 and𝑀𝑙
𝑖 are monolingual. The model 𝑓 (𝑀ℎ

𝑖 ;𝜃
ℎ) is

learned through a specific social event detection algorithm. The model for the low-resource language𝑀𝑙
𝑖 , 𝑓 (𝑀𝑙

𝑖 ;𝜃
𝑙 ), is

learned through the same event detection algorithm but under the supervision of the output of 𝑓 (𝑀𝑙→ℎ
𝑖 ;𝜃ℎ) in both

feature-wise and relation-wise ways, where 𝜃ℎ is the already trained network parameters by high-resource language
data, and𝑀𝑙→ℎ

𝑖 is the transformed low-resource language data in high-resource language semantic space.

1https://github.com/RingBDStack/CLKD
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Table I. NOTATIONS.

Symbol Meaning
𝑆 ;𝑀 Social stream; Message block
𝑀ℎ ;𝑀𝑙 Message block in high-resource language; Message block in low-resource language

𝑀𝑙→ℎ Message block in which the original low-resource language data is transformed into the high-resource language semantic space
𝑚 Message or message as a node type

𝑡𝑚𝑗
; [𝑡𝑖 , 𝑡𝑖+1 ) The arriving time of message𝑚 𝑗 ; Time period of the 𝑖-th message block

𝑚 𝑗+;𝑚 𝑗− A message in the same class as𝑚 𝑗 ; A message not in the same class as𝑚 𝑗

𝑒 ;𝑒𝑚𝑗
Event; The specific event message𝑚 𝑗 belongs to

𝑿 Non-English (French or Arabic) word embeddings
𝒀 English word embeddings
𝑾 The cross-lingual transformation matrix
𝑎 The additional margin set in the triplet loss
𝑤 The window size for maintaining the model
𝑏;𝑚𝑏 ;𝐵; Mini-batch number; A set of messages in the b-th mini-batch; Total number of mini-batches
𝜽 The parameters of GNN model

𝜽 𝒔 ;𝜽 𝒕 The parameters of student model; The parameters of teacher model

𝜽𝒑1 ;𝜽𝒑2 The parameters of peer1 model; The parameters of peer2 model
𝑓 (𝑀𝑖 , 𝜽 ) The detection model for block𝑀𝑖 in which the learned parameters of GNN model is 𝜽
𝑁 ;𝑁𝑒 The total number of nodes in message graph𝐺 ; The total number of edges in𝐺
𝐺 (𝑿 ,𝑨) Message Graph𝐺 ; Initial attribute features of the messages 𝑿 ; The adjacency matrix 𝑨
𝐺 (𝑿𝒕 ,𝑨𝒕 ) Constructed message Graph of teacher-language data
𝐺 (𝑿𝒔 ,𝑨𝒔 ) Constructed message Graph of student-language data
𝐺 (𝑿𝒔→𝒕 ,𝑨𝒔 ) Transformed message Graph of student-language data in teacher’s semantic space
𝐺 (𝑿𝒑1,𝑨𝒑1 ) Constructed message Graph of peer1-language data

𝐺 (𝑿𝒑1→𝒑2,𝑨𝒑1 ) Transformed message Graph of peer1-language data in peer2’s semantic space

𝐺 (𝑿𝒑2,𝑨𝒑2 ) Constructed message Graph of peer2-language data

𝐺 (𝑿𝒑2→𝒑1,𝑨𝒑2 ) Transformed message Graph of peer2-language data in peer1’s semantic space

𝒉 The final representation of messages

𝒉𝒔𝒕𝒖 ;𝒉𝒕𝒆𝒂 The final representation of messages of student network; The final representation of messages of teacher network

𝒉𝒑1 ; 𝒉𝒑2 The final representation of peer1-language data of peer1 network; The final representation of peer2-language data of peer2 network

𝒉𝒑1→𝒑2 The final representation of peer1-language data in peer2’s semantic space of peer2 network

𝒉𝒑2→𝒑1 The final representation of peer2-language data in peer1’s semantic space of peer1 network
L𝑡 Triplet loss
L𝑲𝑫𝒇

Feature-wise knowledge distillation loss

L𝑲𝑫𝒓 Relation-wise knowledge distillation loss
L𝒕𝒐𝒕𝒂𝒍 Total loss

3 METHODOLOGY
This section sets out the CLKD framework for detecting events in single low-resource languages. The description
begins with the overall vanilla event detection architecture (Section 3.1). Section 3.2 introduces the cross-lingual
module. In Section 3.3, we describe the dedicated cross-lingual knowledge distillation (CLKD) framework in both
offline and online situations in detail. Generally, the CLKD framework aims to strengthen representation learning
of messages in low-resource languages by distilling useful knowledge learned from the high-resource language
(i.e., English). The distillation process contains both feature-wise and relation-wise parts. Section 3.4 sets out
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Fig. 2. The overall vanilla detection architecture. The whole detection architecture includes two parts: a graph-based
message representation learning part and a message clustering part.

the life cycle and three stages of the CLKD framework’s operation. And we conclude in Section 3.5 with a time
complexity analysis.

3.1 The Overall Vanilla Detection Architecture
As shown in Fig. 2, the overall vanilla detection architecture consists of two parts: the graph-based message
representation learning part and the message clustering part.

To learn complementary message representations, we first construct a message graph and then adopt a specific
GNN encoder. During the graph construction process, to capture as much information as possible from the
social stream, a series of useful elements, including users, named entities, and hashtags, are extracted at the data
processing stage. They are leveraged to build correlations between messages. For example, if two message nodes
link to the same user, entity, or hashtag, a connection is formed between these two message nodes. In this way,
we obtain a handled homogeneous message graph𝐺 (𝑿, 𝑨), where 𝑨 is the adjacency matrix and 𝑿 denotes the
initial attribute features of the nodes, which is the average of the message’s word embeddings. Now we have a
homogenous message graph with initial node attribute features. The next step is to select a proper GNN encoder
and adopt a scalable training strategy. Considering the powerful capability of the multi-head mechanism in fully
exploiting representation subspaces, we implement a 2-layer multi-head GAT [74] network as the GNN encoder
to learn message representations. Cross-entropy loss only suits the situation where the total number of events is
pre-known and fixed; thus, it cannot handle stream data. We turn to use triplet loss [67] for the backpropagation
of the encoder. L𝑡 denotes the loss calculated by a set of triplets <anchor, positive, negative> based on true
labels. The objective L𝑡 is to build triplets < 𝑚 𝑗 ,𝑚 𝑗+,𝑚 𝑗− > and to keep the distance between the anchor’s
representation 𝒉𝒎𝒋 and the positive’s 𝒉𝒎𝒋+ smaller than the distance between the anchor’s 𝒉𝒎𝒋 and the negative’s
𝒉𝒎𝒋− . Here, positive denotes a message whose label is the same as the anchor’s, while negative is different from
the anchor’s. Note that, the performance of triplet loss heavily relies on triplet selection strategies, i.e., training
with randomly selected triplets faces slow convergence while selecting hardest positive and negative samples
often leads to bad local minima [34, 36, 83]. Hence, to make a balance between them, we adopt the so-called Batch
Random Hard triplet selection strategy. Specifically, for each message𝑚 𝑗 in a batch, we select a positive message
𝑚 𝑗+ and randomly sample a hard negative message𝑚 𝑗− within the batch whose distance to𝑚 𝑗 is smaller than
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the distance between𝑚 𝑗 and𝑚 𝑗+. The loss can be formulated as:

Lt =
∑︁

<𝑚 𝑗 ,𝑚 𝑗+,𝑚 𝑗−>∈{hard triplets}
<𝑚 𝑗 ,𝑚 𝑗+,𝑚 𝑗−>∈{𝑚𝑏 }

max
{
D

(
𝒉𝑚 𝑗

,𝒉𝑚 𝑗+

)
− D

(
𝒉𝑚 𝑗

,𝒉𝑚 𝑗−

)
+ 𝑎, 0

}
, (1)

where 𝑎 denotes the additional margin set in the triplet loss.
After the representation learning of messages, clustering methods are employed to detect different events. Both

distance-based clustering algorithms like K-Means and density-based ones like DBSCAN can be used to cluster
the representations. As illustrated in Fig. 2, the resulting clusters of messages represent the detected social events.

The above-depicted architecture has a strong capability to detect events in high-resource language. To further
strengthen its ability to handle low-resource language data, in this work, we further strengthen the graph-based
representation learning part and propose a cross-lingual knowledge distillation framework, which integrates a
cross-lingual module into the knowledge distillation process.

3.2 Cross-Lingual Module
This section describes the cross-lingual module. Different languages do not share a joint vector space, which
means, the learned representations of the same thing expressed in different languages vary greatly. Also, it means
sharing knowledge learned in one language with another is problematic. Considering the Limited proficiency of
multilingual models such as M-BERT, XLNET, and mT5 in handling low-resource languages, we here leverage
cross-lingual word embedding techniques to formulate the cross-lingual module. As shown in Fig. 3, the process
begins by training a monolingual embedding model for each language considered. This could be done through
any of the well-known word embedding algorithms (e.g., Word2Vec [50], GloVe [62], or fastText [9]). We use
the pre-trained language models in spacy2, which are trained by GloVe. After deriving all isolated monolingual
vector spaces, the mapping between each non-English language and English pair is learned in both directions. To
explore the most appropriate transformations, we try both linear and nonlinear CLWE methods.
The goal with the linear mapping is to learn a matrix𝑾 between the source space and the target space such

that𝑾 = 𝑎𝑟𝑔𝑚𝑖𝑛 | |𝑾𝑿 − 𝒀 | |, where 𝑿 and 𝒀 denote the embeddings for the source words and the target words
respectively, see Fig. 3(b). This linear approach follows the assumption that the source and target embedding spaces
are approximately isomorphic, and will likely suit languages that follow similar grammatical and vocabulary
structures. We choose MUSE [42] to learn the linear mappings between all language pairs as it has yielded
great results in aligning two monolingual embedding spaces. The cross-lingual word embeddings are created by
Generative Adversarial Networks (GANs), where the generator learns the transformation matrix𝑾 , ensuring
that the transformed non-English embeddings𝑾𝑿 approximate the English semantic embeddings 𝒀 as closely
as possible. The discriminator tries to classify whether the embeddings from the English embedding distribution
are real ones or transformed. Do note, however, that MUSE is not the only choice. Other linear methods like
VecMap [4] would also be suitable.

For the non-linear mapping, we choose LNMAP [52]. LNMAP is a model that operates independently of
isomorphic assumption. As shown in Fig. 3(c), it comprises two auto-encoders with non-linear hidden layers
for each language. The auto-encoders are first trained independently in a self-supervised way to induce the
latent code space of the respective languages. A small seed dictionary is then used to learn the non-linear
mappings between the two learned latent spaces of the two auto-encoders. Specifically, the non-linear mappings
are implemented as feed-forward neural networks with non-linear activation layers. For more details can refer to
[52]. As the first non-linear cross-lingual word embedding method, LNMAP has shown outstanding performance
with many language pairs including far-distance language pairs. In experiments, we use the linear and nonlinear

2https://spacy.io/api/annotation#section-named-entities
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Fig. 3. The cross-lingual module. (a) shows the word embeddings learned by some monolingual embedding models for
each language considered. (b) depicts the linear mapping between languages and (c) shows the non-linear mapping.

mappings learned by MUSE and LNMAP for each non-English-English pair to build the cross-lingual module in
both directions.

3.3 Cross-Lingual Knowledge Distillation
The CLKD framework is for cases where one wishes to detect events in a low-resource language. The procedure
essentially borrows knowledge learned from a high-resource language (English) and uses it to assist learning
in a low-resource language. There is a large quantity of English event data that is already labeled. As shown
in Fig. 4, we devise two distillation architectures – one Teacher-Student configuration, intended for offline use,
and the other Mutual-Learning configuration, designed for online situations. However, the backbone of both
architectures is the same GNN encoder, which is a 2-layer multi-head GAT model. And the basic training loss is
the described triplet loss in Section 3.1. Meanwhile, the distillation loss designed in both architectures is the same
except for the distillation direction. In the Teacher-Student configuration, the distillation flows in one direction
(i.e., from teacher to student) while it goes in both directions in the Mutual-Learning configuration. To extract
sufficient knowledge, and transfer it in an effective way, we propose a hybrid distillation loss that consists of both
feature-wise and relation-wise distillation parts. In the following subsections, we will introduce them in detail.

3.3.1 Feature-wise Distillation. As depicted in Fig. 4, the feature-wise distillation proposed in our work is
similar to existing studies with a modification by adding a cross-lingual module. This module, see section 3.2, is
designed to alleviate the discrepancy between teacher and student networks caused by different languages of
training data. Generally, traditional KD methods being applied in detection tasks pay attention to distilling key
information in representation space by simply matching the features in a specific intermediate layer or the output
layer [15, 66]. Taking the more common Teacher-student configuration as an example, this kind of distillation
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Fig. 4. Overview of the cross-lingual knowledge distillation framework. (a) shows the Teacher-Student distillation
architecture for the offline situation; (b) shows the Mutual-Learning distillation architecture for the online situation.

can often be expressed as minimizing the following objective function:

L𝑠𝑡𝑢
𝐾𝐷𝑓

=
∑︁
𝑥𝑖 ∈Xs

D
(
𝜃 𝑡 (𝑥𝑖 ) , 𝜃𝑠 (𝑥𝑖 )

)
, (2)

where 𝜃 𝑡 and 𝜃𝑠 denote the pre-trained teacher’s network and the student’s network, respectively. Nevertheless,
when distilling the whole feature layer in cross-modality or cross-lingual tasks, the transferred knowledge from
teacher to student will inevitably contain much noise due to the dramatic domain gap or semantic gap across the
training data of teacher and student. To tackle this issue and achieve more effective transfer, we add a cross-lingual
module which has been described in Section 3.2 to eliminate the cross-lingual bias. The cross-lingual module can
be either linear or nonlinear based on the specific language pair. The objective function now becomes:

L𝑠𝑡𝑢
𝐾𝐷𝑓

=
∑︁
𝑥𝑖 ∈Xs

D
(
𝜃 𝑡 (𝑾𝑥𝑖 ) , 𝜃𝑠 (𝑥𝑖 )

)
, (3)

where𝑾 represents the cross-lingual transformation function, which as aforementioned, can be either linear or
non-linear.
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3.3.2 Relation-wise Distillation. The above-depicted feature-wise distillation transfers knowledge point-to-
point, with the student model emulating the cross-lingual teacher model’s representations. However, it may not
capture the nuanced relationships between social texts, which are also crucial for precise event detection. In
contrast, relation-wise distillation focuses on interdependencies and connections between social texts within
events. The teacher model, specialized in event detection, understands both individual features and intricate
relationships among social texts. By transferring this valuable relational knowledge, the student model develops a
deeper understanding of the connections and distinctions that characterize different events, leading to enhanced
accuracy in event detection. Note that relation-wise distillation successfully transfers knowledge by penalizing
those higher-order structural differences. Usually, the higher the order considered in the extracted relations, the
more comprehensive information can be obtained. Nevertheless, the computation cost will dramatically grow as
the order gets higher [28]. Thus, we mainly focus on 2-order relational knowledge (i.e., pairwise distillation). The
computation of this order is also key to the computation process of the scalable training strategy used in our work
(i.e., the triplet loss). Hence, the distillation loss is consistent with the network’s main training loss, which helps
accelerate the training process and maintain training stability. Still taking the Teacher-student configuration as
an example, the objective of the previous 2-order relation-wise distillation can be expressed as:

L𝑠𝑡𝑢
𝐾𝐷𝑟

=
∑︁

(𝑥𝑖 ,𝑥 𝑗 )∈X2
𝑠

𝑙𝛿
(
D

(
𝜃 𝑡 (𝑥𝑖 ) , 𝜃 𝑡

(
𝑥 𝑗
) )
,D

(
𝜃𝑠 (𝑥𝑖 ) , 𝜃𝑠

(
𝑥 𝑗
) ) )

, (4)

where D computes the distance of a given pair, and 𝑙𝛿 is a loss that penalizes structural difference between the
learned feature spaces of teacher and student.
However, transferring all possible pair relations in a batch, existing relation-wise distillation approaches [28,

56, 71] ignore the mistakes made by the teacher, which severely hinders the training of student models. This
problem is even more obvious and severe in the Mutual-Learning configuration. Since in early epochs, without
the pre-training stage, most relations extracted by the peer model are misleading and untrustable. Forcing the
students to uncritically mimic their pair models may be harmful to the model training. We solve this problem by
selectively transferring beneficial relations. Recall that in Section 3.1, we introduce the triplet selection strategy
in the triplet loss, i.e., the Batch Random Hard triplet selection strategy. Only those hard triplets within the
same batch will be selected for backpropagation. Here we combine the relation-wise distillation method with the
triplet selection strategy. The original pairwise distillation objective function (i.e., Eq. 4) is optimized by only
transferring knowledge which corrects improper pair distances within the chosen negative triplets. Specifically, to
guarantee that the transferred relational knowledge is indeed advantageous, we establish contrasting activation
criteria for negative pairs and positive pairs in those hard triplets. In the context of a negative pair, the teacher’s
signal is designed to be effective only when the gap or difference between the two messages is greater in the
teacher’s prediction compared to the student’s prediction. Conversely, when dealing with a positive pair, the
teacher’s signal becomes active when the gap or difference between this pair’s prediction in the teacher’s model
is smaller than that in the student’s model. This approach ensures that the margin is set in a customized and
adaptive manner, taking into account the knowledge of the peer network, for each challenging negative triplet.
The optimized objective function can be formulated as follows:

L𝑠𝑡𝑢
𝐾𝐷𝑟

=
∑︁

<𝑚𝑖 ,𝑚 𝑗 ,𝑚𝑘>∈{hard triplets}
<𝑚𝑖 ,𝑚 𝑗 ,𝑚𝑘>∈{𝑚𝑏 }

<𝑚𝑖 ,𝑚 𝑗>∈<𝑚𝑖 ,𝑚𝑖+>,<𝑚𝑖 ,𝑚𝑘>∈<𝑚𝑖 ,𝑚𝑖−>

max
{
−D

(
𝜃 𝑡 (𝑾𝑥𝑖 ) , 𝜃 𝑡

(
𝑾𝑥 𝑗

) )
+ D

(
𝜃𝑠 (𝑥𝑖 ) , 𝜃𝑠

(
𝑥 𝑗
) )
, 0
}

+max
{
D

(
𝜃 𝑡 (𝑾𝑥𝑖 ) , 𝜃 𝑡 (𝑾𝑥𝑘 )

)
− D (𝜃𝑠 (𝑥𝑖 ) , 𝜃𝑠 (𝑥𝑘 )) , 0

}
,

(5)

where 𝑥𝑖 and 𝑥 𝑗 are the representations of a positive pair, and 𝑥𝑖 and 𝑥𝑘 are representations belonging to different
events. This function aims to reduce the distance between those positive pairs while widely separating the
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negative pairs. Meanwhile, the added relation-wise distillation can also be seen as an enhanced version of the
original triplet loss.

Algorithm 1: Training procedure of CLKD framework (Teacher-student)
Input: The original student-language dataset (𝑋𝑠 , 𝐴𝑠 ); The transformed student-language dataset in

teacher’s semantic space (𝑋𝑠→𝑡 , 𝐴𝑠 ); The pre-trained teacher’s network 𝜃 𝑡 ; Maximum training
epoch number 𝐸.

Output: Trained student network 𝜃𝑠 .
1 Initialization (𝑒=1; Randomly initialize 𝜃𝑠 );
2 while 𝑒 ≤ 𝐸 do
3 Compute 𝒉𝒔𝒕𝒖 of student network;
4 Compute 𝒉𝒕𝒆𝒂 of teacher network;
5 Compute the triplet loss L𝑡 (𝒉𝒔𝒕𝒖) of student network via Eq. 1;
6 Compute the feature-wise distillation loss L𝑠𝑡𝑢

𝐾𝐷𝑓
via Eq. 3 and relation-wise distillation loss L𝑠𝑡𝑢

𝐾𝐷𝑟
via

Eq. 5;
7 Compute the total loss of student network L𝑠𝑡𝑢

𝑡𝑜𝑡𝑎𝑙
via Eq. 6;

8 Back-propagation to update student network 𝜃𝑠 ;
9 𝑒 = 𝑒 + 1;

10 end

3.3.3 Teacher-student structure. As shown in Fig. 4(a), the Teacher-Student structure is designed for offline
situations. In our experiments, the network intended for French or Arabic event detection is regarded as the
student and the network pre-trained on a large-scale English dataset is the teacher. It is worth noting that both
the students and the teacher share the same network architecture, and the training process follows a conventional
two-stage approach. Initially, we train the teacher network and keep its parameters fixed. Subsequently, we
proceed to train the student network. Each student is encouraged to acquire detection knowledge from the
ground-truth labels of its data using the triplet loss. Meanwhile, they are also guided to explore knowledge
embedded in the output representations of the teacher through both feature-wise distillation and relation-wise
distillation. Algo. 1 provides details of the procedure. Specifically, during the training process of the student,
we have the processed student-language message graph𝐺 (𝑿𝒔, 𝑨𝒔). We also utilize the corresponding student-
language→ teacher-language cross-lingual language models introduced in Section 3.2 to get the transformed
initial features of messages, i.e.,𝑿𝒔→𝒕 . The transformed features are in English semantic space. The pair𝐺 (𝑿𝒔, 𝑨𝒔)

and 𝐺 (𝑿𝒔→𝒕 , 𝑨𝒔) is the input to student and teacher networks respectively. The aim of obtaining cross-lingual
attribute features 𝑿𝒔→𝒕 is to eliminate the existing language discrepancy when French or Arabic data is input to
the pre-trained teacher model specified for English. To use a real-world analogy, this process is similar to a case
where there is an expert who has rich experience in social event detection but only understands English, and a
student, inexperienced in social event detection, speaks another small language. The messages are converted
into English before being shown to the expert. The expert can then use his or her expertise in social event
detection to teach the student how to detect events by way of example. To transfer prior knowledge from the
English expert to the French and Arabic students, the final message output of teacher model 𝒉𝒕𝒆𝒂 is used as an
extra supervisory signal. The specific optimized functions of distillation losses adopted in the Teacher-student
configuration are demonstrated in Eq. 3 and Eq. 5 which encourage the student to mimic the teacher in both
point-wise and relation-wise ways. The total loss for the backpropagation of the student training network is set
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as a weighted sum of the triplet loss based on true labels and the optimized knowledge distillation losses:

L𝑠𝑡𝑢
𝑡𝑜𝑡𝑎𝑙

= L𝑡 (𝒉𝒔𝒕𝒖) + 𝜆1L𝑠𝑡𝑢
𝐾𝐷𝑓

+ 𝜆2L𝑠𝑡𝑢
𝐾𝐷𝑟

, (6)

where 𝜆1 and 𝜆2 are the hyper-parameters that control the weights of the feature-wise and relation-wise knowledge
distillation losses.

Algorithm 2: Training procedure of CLKD framework (Mutual-Learning)
Input: The original peer1-language dataset (𝑋𝑝1, 𝐴𝑝1); The transformed peer1-language dataset in peer2’s

semantic space (𝑋𝑝1→𝑝2, 𝐴𝑝1); The original peer2-language dataset (𝑋𝑝2, 𝐴𝑝2); The transformed
peer2-language dataset in peer1’s semantic space (𝑋𝑝2→𝑝1, 𝐴𝑝2); Maximum training epoch number
𝐸.

Output: Trained peer1 network 𝜃𝑝1 and peer2 network 𝜃𝑝2.
1 Initialization (𝑒=1; Randomly initialize 𝜃𝑝1 and 𝜃𝑝2);
2 while 𝑒 ≤ 𝐸 do
3 Compute 𝒉𝒑1 of peer1, 𝒉𝒑1→𝒑2 of peer2;
4 Compute the triplet loss L𝑡 (𝒉𝒑1) of peer1 via Eq. 1;
5 Compute the feature-wise distillation loss L𝑝1

𝐾𝐷𝑓
like Eq. 3 and relation-wise distillation loss L𝑝1

𝐾𝐷𝑟
of

peer1 like Eq. 5;
6 Compute the total loss L𝑝1

𝑡𝑜𝑡𝑎𝑙
of peer1 via Eq. 7;

7 Back-propagation to update peer1 network 𝜃𝑝1;
8 Compute 𝒉𝒑2 of peer2, 𝒉𝒑2→𝒑1 of peer1;
9 Compute the triplet loss L𝑡 (𝒉𝒑2) of peer2 via Eq. 1;

10 Compute the feature-wise distillation loss L𝑝2
𝐾𝐷𝑓

like Eq. 3 and and relation-wise distillation loss L𝑝2
𝐾𝐷𝑟

of peer2 like Eq. 5;
11 Compute the total loss L𝑝2

𝑡𝑜𝑡𝑎𝑙
of peer2 via Eq. 8;

12 Back-propagation to update peer2 network 𝜃𝑝2;
13 𝑒 = 𝑒 + 1;
14 end

3.3.4 Mutual-Learning Structure. Fig. 4(b) shows the mutual distillation scheme, designed for online situations.
This configuration is motivated by Authors in [87], who contend that students can learn from each other. We
have formulated the structure as a cohort of two networks that exploit knowledge from each other. Hence,
both networks are strengthened through the help of their peer. The training details are shown in Algo. 2. We
have two processed monolingual social event data 𝐺 (𝑿𝒑1, 𝑨𝒑1) and 𝐺 (𝑿𝒑2, 𝑨𝒑2) specified for the training of
peer1 network and peer2 network respectively. Similarly, to eliminate language discrepancy, we also get the
transformed peer1 data in peer2-language semantic space𝐺 (𝑿𝒑1→𝒑2, 𝑨𝒑1) and the transformed peer2 data in
peer1-language semantic space𝐺 (𝑿𝒑2→𝒑1, 𝑨𝒑2) by the corresponding cross-lingual language models. To enhance
learning, during the training process, not only explicit knowledge from the true labels are leveraged, but implicit
point-wise and pairwise knowledge from the peer are also used. For example, as for the training of peer1 network,
the raw message representations 𝐺 (𝑿𝒑1, 𝑨𝒑1) and the transformed ones 𝐺 (𝑿𝒑1→𝒑2, 𝑨𝒑1) are simultaneously
input into peer1 and peer2 networks respectively, with the corresponding outputs of 𝒉𝒑1 and 𝒉𝒑1→𝒑2. 𝒉𝒑1→𝒑2

is used as an extra supervisory signal of peer1. As depicted in Fig. 4(b), the distillation loss also contains both

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 37. Publication date: August 2024.

Page 12 of 37Transactions on Knowledge Discovery from Data

https://mc.manuscriptcentral.com/tkdd



Towards Cross-lingual Social Event Detection with Hybrid Knowledge Distillation • 37:13

feature-wise and relation-wise parts. By analogy, the distillation loss for the peer2 network is computed in the
same way by treating the peer1 model as the guiding peer. The total loss of peer1 and peer2 is also formulated as
the weighted combination of the corresponding triplet loss based on true labels and the corresponding knowledge
distillation loss:

L𝑝1
𝑡𝑜𝑡𝑎𝑙

= L𝑡 (𝒉𝒑1) + 𝜆1L𝑝1
𝐾𝐷𝑓

+ 𝜆2L𝑝1
𝐾𝐷𝑟

, (7)

L𝑝2
𝑡𝑜𝑡𝑎𝑙

= L𝑡 (𝒉𝒑2) + 𝜆1L𝑝2
𝐾𝐷𝑓

+ 𝜆2L𝑝2
𝐾𝐷𝑟

, (8)

where the specific computation processes of feature-wise and relation-wise knowledge distillation losses are
similar to those depicted in Eq. 3 and Eq. 5. The entire framework is trained online, and the weights of peer1 and
peer2 are updated alternatively according to the combined loss. Suppose peer1 has richer training data (e.g., data
in English), and the target is to improve the performance of the peer2 network (e.g., the network trained for French
data). From peer1’s view, the feature-wise and relation-wise knowledge distillations 𝐿𝑝1

𝐾𝐷𝑓
and 𝐿𝑝1

𝐾𝐷𝑟
provide the

knowledge learned from its peer, which guides peer1 to implicitly generalize towards a more reliable direction to
help detect peer2 data. In other words, with the knowledge distilled from peer2, peer1 provides better suggestions
to help peer2 extract events from its data. From peer2’s view, the knowledge distillation loss 𝐿𝑝2

𝐾𝐷
brings additional

knowledge from peer1 that serves to augment and directly enhance peer2’s generalization ability. Further, an
ensemble strategy is used to explore more informative and comprehensive cross-lingual knowledge in the final
detection of the target peer2’s data. In detail, to do the final message clustering, peer1’s final representations
𝒉𝒑2→𝒑1 of the transformed peer2 data 𝐺 (𝑿𝒑2→𝒑1, 𝑨𝒑2) are concatenated with peer2’s final representations 𝒉𝒑2
of the peer2 data 𝐺 (𝑿𝒑2, 𝑨𝒑2). This process is similar to a case with two student peers – one speaks English
and the other does not. The student who speaks another language learns the message representations in her
own language but also uses the suggestion of her English-speaking peer. The opinions of both students are then
combined to make a more general and informed decision.

3.4 Continuous Detection Framework
To extend the framework to adapt to online (incremental) scenarios, we follow a life cycle that contains three
stages: pre-training, detection, and maintenance. We only update the parameters of models in the pre-training
and maintenance stages. In the detection stage, we directly adopt the latest trained models in the early block to
obtain message representations and then leverage clustering techniques to detect events. Specifically, as shown
in Fig. 5, in the pre-training stage, an initial message graph of each data is constructed from the first message
block. Meanwhile, we also obtain the transformed message graphs in which the initial features of messages
are transformed into their peer’s language space. Then we utilize Algo. 2 to train the peer1 GNN encoder and
peer2 GNN encoder. The pre-training stage only runs once. In the detection stage, a new graph is constructed
for each coming block. We directly detect events of each coming block with the already trained model. In the
maintenance stage, we continuously train the model with the newest message block, allowing the model to
learn new knowledge. The training process of the maintenance stage is similar to the pre-training stage; the
only difference lies in the initialization of the model’s parameters. In the pre-training stage, the parameters of
the peer1 GNN encoder and peer2 GNN encoder are both randomly initialized. In the maintenance stage, the
initial model’s parameters are those learned last time. The detection stage and the maintenance stage alternate.
In this way, the model continuously adapts to incoming data. It can detect new events and update the model’s
knowledge. It also ensures a light training scheme as obsolete nodes in past blocks are deleted.

3.5 Time Complexity Analysis
The overall running time (except the CLKD framework in the Mutual-Learning structure) is 𝑂 (𝑁𝑒 ), where 𝑁𝑒
is the total number of edges in the message graph. In detail, the running time for constructing a monolingual
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Fig. 5. The life cycle of our continuous detection framework, including pre-training, detection and maintenance.

message graph is 𝑂 (𝑁 + 𝑁𝑒 ) = 𝑂 (𝑁𝑒 ), where 𝑁 is the total number of messages in the message graph. Since the
cross-lingual language models (mentioned in Section 3.2) can be pre-computed before training. In terms of the
Teacher-Student CLKD framework (the teacher is pre-trained and fixed), we need𝑂 (𝑁 ) to obtain English semantic
features. Propagating the GNN encoder takes 𝑂 (𝑁𝑑𝑑 ′ + 𝑁𝑒𝑑

′) = 𝑂 (𝑁𝑒 ), where 𝑑 and 𝑑 ′ are the input and output
dimensions of the GNN encoder. For the loss calculation, triplet sampling takes 𝑂 (∑𝐵

𝑏=1 |𝑚𝑏 |2), where |{𝑚𝑏}|
is the number of messages in the 𝑏-th batch and 𝐵 is the total number of batches. Plus, another 𝑂 (∑𝐵

𝑏=1 |𝑚𝑏 |2)
is required to calculate knowledge distillation loss. In reality, 𝑂 (∑𝐵

𝑏=1 |𝑚𝑏 |2) ≪ 𝑁𝑒 . Thus, the total complexity
is 𝑂 (𝑁𝑒 ). We then analyze the overall running time of the CLKD framework in the Mutual-Learning structure.
Suppose the total number of edges and nodes of the auxiliary data we select are 𝑁 ′

𝑒 and 𝑁 ′. If 𝑁 ′
𝑒 is in the same

order of magnitude with 𝑁𝑒 , the overall running time is 𝑂 (𝑁𝑒 ). If 𝑁 ′
𝑒 ≫ 𝑁𝑒 , the overall running time is 𝑂 (𝑁 ′

𝑒 ).
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Fig. 6. Dataset statistics. (a), (b), (c) show the number of messages related to each event on the English dataset, French
dataset and Arabic dataset, respectively.

In fact, the time of mutual learning can be roughly seen as the sum of the run-time of the auxiliary data and of
the target data in the Teacher-Student structure.

4 EXPERIMENTS
To evaluate our CLKD framework, we conduct offline and online experiments with real-world datasets. The three
publicly-available datasets contain Twitter messages – one each in English, French, and Arabic. As described
in the Methodology, the backbone GNN encoder is configured as a two-layer multi-head GAT model, i.e., the
encoder applied in KPGNN as reported in [11]. As for the cross-lingual module, we adopt MUSE in work [42] to
learn the linear mappings between languages and LNMAP in work [52] for non-linear mappings.

4.1 Experimental Setup
4.1.1 Datasets. The three Twitter datasets are filtered for duplicate and unavailable tweets, leaving the

following record counts:
• English Twitter dataset [49] – 68,841 manually labeled tweets relating to 503 event classes, spreading over
a period of 29 days.

• French Twitter dataset [48] – 64,516 labeled tweets relating to 257 event classes over 23 days.
• Arabic Twitter dataset [2] – 9,070 labeled tweets relating to 7 catastrophic-class events over different
periods.

To evaluate the CLKD framework, in the offline tests, the teacher is trained on the English Twitter dataset,
and the students are trained on the French and Arabic Twitter datasets. The task’s goal is to better detect events
in the low-resource French and Arabic data by leveraging prior knowledge learned from the teacher network.
In the online tests, we use the English and French datasets in a mutual learning scheme comprising two peer
networks. The task’s goal is to strengthen the model’s detection capability in the French stream online. Fig. 6
shows how the three datasets are partitioned between all the events. Obviously, the numbers of messages are
very unbalanced, making the detection task more difficult by design.

4.1.2 Baselines. Most models in the social event detection domain are designed for monolingual data, including
general message representation learning, offline social event detection methods, and incremental ones. We select
the following methods as baselines of the CLKD framework: Word2Vec [50], which uses the average of the
pre-trained word2Vec embeddings of all words in the message as its representation; BERT [23], which uses the
averaging BERT embeddings of all the words in a message as its representation; LDA [8], which is the most typical
topic model in NLP to cluster texts; Pairwise Popularity Graph Convolutional Network (PP-GCN) [58], which is an
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offline fine-grained social event detection method based on GCN [41]; EventX [44], which is a fine-grained event
detection method based on community detection, applicable to online scenarios; QSGNN [63], which focuses
on open-set social event detection tasks and generalizes knowledge from known to unknown by leveraging the
best of known samples (i.e., setting stricter constraints in the inter-class distance and direction relations) and
reliable knowledge transfer (generating and selecting high-quality pseudo labels); KPGNN [11], which leverages
the inductive learning ability of GNNs to efficiently represent and detect events. KPGNN has shown promising
performance in social event detection tasks for both offline and online situations.

4.1.3 Experimental Setting and Implementation. For Word2Vec, we use the pre-trained 300-d language mod-
els3, 4, 5. For LDA, we set the topic number 50. For BERT, we use the open-source implementation6 and adopt
an average 768-d hidden-states of tokens in the last layer as the embeddings. For EventX, we follow the hyper-
parameters settings suggested in the original paper. For the GNN-based methods (PP-GCN, QSGNN, KPGNN)
which we select as baselines and the backbone of this work, we follow the hyper-parameter setting in KPGNN
paper [11]. Specifically, we set the total number of heads to 4, the hidden embedding dimension and output
dimension to 32, the total number of layers 𝐿 to 2, the learning rate to 0.001, the optimizer to Adam, and training
epochs to 15 with the patience of 5 for early stopping. In the data preprocessing stage, to create initial tweet
representations, tweets are processed by systematically removing emojis and stripping away special characters
associated with hashtags and mentions (like "#" and "@"), leaving only the textual content. The cleaned sentences
are then further analyzed by calculating the average of pre-trained language model embeddings for each word in
the relevant languages to generate tweet embeddings. This added step ensures that the data is suitably prepared for
the next phases of analysis. Meanwhile, for the CLKD framework, we choose Euclidean distance for the distance
metric in feature-wise and relation-wise knowledge distillation functions. As for the setting of hyper-parameters,
the weights of the feature-wise and relation-wise knowledge distillation losses 𝜆1 and 𝜆2 are set to 0.1 and 0.5 in
the Teacher-Student structure, and both to 0.1 in the Mutual-Learning structure. The mini-batch size |{𝑚𝑏}| is
2000 and the maintenance window size w is 3, which means the network is retrained every 3 message blocks. We
repeat all experiments 5 times and report the mean and standard variance of the results. Note that some baselines
(Word2Vec, LDA) require the number of total event classes to be pre-defined. For a fair comparison, we apply
K-means clustering after obtaining the message representations from the other models and set the total number
of classes to the number of ground-truth classes. DBSCAN could be used outside an experimental setting if the
total number of classes was unknown, as is often the case with incremental detection.

4.1.4 EvaluationMetrics. We evaluate the performance of themodels using three clusteringmetrics: normalized
mutual information (NMI), adjusted mutual information (AMI), and adjusted Rand index (ARI). NMI measures the
amount of information one can extract from the prediction distribution and has been broadly adopted in event
detection method evaluations. However, NMI is not adjusted for the chance. Thus, we also select AMI, which is a
more recent proposition. ARI considers all prediction label pairs and counts pairs that are assigned in the same
and different clusters.

4.2 Cross-lingual Social Event Detection
This section presents the results of the CLKD framework specified for the special cases of detection in one specific
low-resource language. The report begins with the offline evaluation, followed by the incremental evaluation.
The percentages for training, validation, and testing are also 70%, 10%, and 20%.

3https://spacy.io/models/en-starters#en_vectors_web_lg
4https://spacy.io/models/en-starters#fr_vectors_web_lg
5https://github.com/bakrianoo/aravec
6https://huggingface.co/models
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Table II. Pre-trained teacher network and knowledge prior. "KPGNN-Tea" means the model trained on English Twitter data.
"KPGNN-Tea-LLA" means first transforming non-English data into English semantic space in a linear way and then inputting
the data into the trained teacher model. "KPGNN-Tea-NLA" is similar to "KPGNN-Tea-LLA" with the only modification of
transforming semantic space in a nonlinear way.

Model Metrics English Data French Data Arabic Data

KPGNN-Tea
NMI .70±.02 .50±.01 .39±.01
AMI .63±.01 .42±.00 .20±.01
ARI .23±.01 .11±.01 .19±.02

KPGNN-Tea-LLA
NMI - .52±.01 .42±.01
AMI - .44±.01 .22±.01
ARI - .16±.01 .20±.02

KPGNN-Tea-NLA
NMI - .58±.01 .40±.03
AMI - .51±.01 .26±.02
ARI - .20±.01 .21±.03

4.2.1 Offline Evaluation. Recall that, in offline situations, the CLKD framework follows a two-stage training
strategy – first the teacher network is trained, and then the student networks. Hence, in the first stage, we train a
teacher network on the English Twitter dataset. Then we train the student networks on the non-English datasets
(i.e., French and Arabic) while fixing the teacher network’s parameters. To explore how much knowledge the
trained English teacher network could lend to the student networks, we experiment with directly inputting the
student datasets into the pre-trained teacher network, adding the cross-lingual module, and recording these
results separately. The results are shown in Table II. Here "KPGNN-Tea" means the model trained on English
Twitter data. "KPGNN-Tea-LLA" means first transforming non-English data into English semantic space in a linear
way and then inputting the data into the trained teacher model. "KPGNN-Tea-NLA" is similar to "KPGNN-Te-LLA,"
with the only modification being that it transforms semantic space in a nonlinear way. With 0.70±0.02 NMI,
0.63±0.01 AMI, and 0.23±0.01 ARI, the teacher network on English produces outstanding results. On the French
and Arabic datasets, directly inputting datasets to the teacher network returns 0.50±0.01 NMI and 0.39±0.01
NMI, respectively. Table III shows these values are better than most baselines, which suggests that the teacher
does hold prior knowledge that could be transferred to the student networks. Furthermore, when adding the
linear and nonlinear language transformations, the results are even better. For example, if we map the French
data and Arabic data into English semantic space in a nonlinear way, the teacher network returns 0.58±0.01
NMI and 0.41±0.03 NMI respectively, which greatly surpasses the results with no semantic mapping. This also
demonstrates the effectiveness of the designed cross-lingual module in our CLKD framework.
Table III shows further validation of the effectiveness of the CLKD framework. Here, we train the French

and Arabic student networks under feature-wise and relation-wise supervision from the teacher but without
making language alignment, i.e., without the cross-lingual module, denoted as CLKD-w/o LA. To demonstrate the
effects of different level orders on knowledge distillation, we further remove the relation-wise supervision from
the teacher, i.e., CLKD-w/o LA-w/o RKD. CLKD-LLA denotes the implementation of having both feature-wise
and relation-wise knowledge distillation with the linear cross-lingual module MUSE, and CLKD-NLA is with
the non-linear cross-lingual module LNMAP. From a careful review of these results, we observe the following:
(1) The GNN-based methods (PP-GCN, KPGNN, QSGNN) achieve much better results than the other baselines,
which is due in large part to their ability in aggregating message attribute features and structural information.
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Table III. Offline Evaluation on French and Arabic datasets. The bolded results represent the optimal outcome.

Methods
French Data Arabic Data

NMI AMI ARI NMI AMI ARI
Word2Vec [50] .26±.00 .23±.00 .04±.00 .03±.00 .03±.00 .02±.00
BERT [23] .33±.01 .24±.00 .04±.00 .14±.00 .14±.00 .07±.00
LDA [8] .26±.00 .16±.00 .01±.00 .03±.00 .02±.00 .02±.00

PP-GCN [58] .56±.02 .48±.01 .17±.01 .33±.02 .32±.02 .31±.02
EventX [44] .52±.00 .58±.00 .01±.00 .28±.00 .03±.00 .03±.00
QSGNN [63] .67±.02 .63±.02 .30±.03 .78±.02 .77±.01 .79±.02
KPGNN [11] .63±.01 .59±.01 .27±.03 .75±.02 .74±.01 .75±.02

CLKD-w/o LA-w/o RKD .64±.01 .59±.01 .27±.02 .76±.02 .77±.03 .78±.03
CLKD-w/o LA .69±.02 .65±.02 .39±.04 .79±.02 .79±.02 .81±.03
CLKD-LLA .71±.02 .66±.01 .43 ±.02 .80±.03 .80±.02 .82±.03
CLKD-NLA .70±.02 .66±.01 .38±.02 .81±.02 .81±.02 .84±.02
promotion ↑ 4% ↑ 3% ↑ 13% ↑ 3% ↑ 4% ↑ 5%

Table IV. The statistics of French social stream.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

# of messages 5356 3186 2644 3179 2662 4200 3454 2257
# of events 22 19 15 19 27 26 23 25

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

# of messages 3669 2385 2802 2927 4884 3065 2411 1107
# of events 31 32 31 29 28 26 25 14

Specifically, QSGNN gains better performance than KPGNN while the adopted backbone GNN model is the
same. We owe this improvement to the stricter constraints of setting larger inter-class distance and orthogonal
inter-class feature direction in QSGNN, which greatly helps distinguish different events. (2) Generally, the four
variants of the Teacher-Student CLKD framework gain equal or better results than the original KPGNN model
and the powerful QSGNN model. This is because, under the supervision of the pre-trained teacher network, prior
knowledge that helps detect events is transferred to the students to augment their training. Specifically, the better
result of CLKD-w/o LA-w/o RKD compared to KPGNN validates the effectiveness of transferring feature-wise
knowledge from the teacher. This kind of point-wise information helps the students encode great representations
for messages in low-resource languages. In CLKD-w/o LA, except for the feature-wise knowledge extracted
from the teacher, the higher-order relation-wise knowledge is also transferred to students. As can be seen in
Table III, with the help of beneficial relation-wise knowledge, the model’s ability to distinguish different events
gets greatly enhanced. That is because, by adding the relation-wise information, students are capable of setting
larger inter-class distances and smaller intra-class distances for those hard negative triplets. Meanwhile, further
comparing the promotions of adding feature-wise supervision (i.e., the promotion of CLKD-w/o LA to KPGNN)
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Table V. Incremental evaluation NMIs on the French dataset. The underlined and bolded results represent the optimal
outcome.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

Word2Vec [50] .22±.00 .22±.00 .25±.00 .28±.00 .48±.00 .33±.00 .35±.00 .37±.00
BERT [23] .32±.00 .32±.00 .31±.00 .33±.00 .47±.00 .36±.00 .41±.00 .44±.00
LDA [8] .20±.00 .09±.00 .13±.00 .10±.00 .24±.00 .22±.00 .12±.00 .24±.00

PP-GCN [58] .49±.01 .45±.00 .56±.03 .54±.03 .54±.02 .52±.02 .56±.04 .56±.03
EventX [44] .34±.00 .37±.00 .37±.00 .39±.00 .53±.00 .44±.00 .41±.00 .54±.00
QSGNN [63] .57±.01 .58±.01 .57±.01 .58±.03 .61±.02 .60±.01 .64±.01 .57±.02
KPGNN [11] .54±.01 .56±.02 .52±.03 .55±.01 .58±.02 .59±.03 .63±.02 .58±.02

CLKD-w/o LA-w/o RKD .54±.01 .57±.01 .54±.02 .57±.02 .61±.02 .61±.03 .64±.02 .60±.01
CLKD-w/o LA .55±.02 .57±.02 .63±.03 .55±.02 .60±.02 .67±.02 .65±.02 .62±.01
CLKD-LLA .57±.02 .58±.01 .63±.01 .57±.02 .62±.02 .68±.01 .63±.03 .61±.02
CLKD-NLA .56±.02 .59±.02 .58±.02 .52±.01 .57±.00 .69±.02 .63±.02 .59±.02
promotion − ↑ 1% ↑ 6% ↓ 1% ↑ 1% ↑ 9% ↑ 1% ↑ 4%

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

Word2Vec [50] .33±.00 .46±.00 .41±.00 .40±.00 .22±.00 .36±.00 .41±.00 .28±.00
BERT [23] .38±.00 .42±.00 .45±.00 .48±.00 .31±.00 .43±.00 .39±.00 .34±.00
LDA [8] .16±.00 .17±.00 .22±.00 .28±.00 .19±.00 .24±.00 .33±.00 .07±.00

PP-GCN [58] .54±.02 .56±.06 .59±.03 .60±.02 .61±.01 .60±.02 .57±.03 .53±.02
EventX [44] .45±.00 .52±.00 .48±.00 .51±.00 .44±.00 .52±.00 .49±.00 .39±.00
QSGNN [63] .52±.02 .60±.01 .60±.01 .61±.02 .59±.04 .68±.02 .63±.02 .51±.03
KPGNN [11] .48±.02 .57±.01 .54±.01 .55±.04 .60±.02 .66±.01 .60±.01 .52±.02

CLKD-w/o LA-w/o RKD .55±.02 .66±.02 .59±.01 .64±.01 .65±.00 73±.00 .66±.02 .51±.02
CLKD-w/o LA .57±.04 .64±.02 .60±.02 .70±.01 .62±.01 71±.02 .70±.02 .50±.02
CLKD-LLA .55±.01 .62±.02 .60±.02 .71±.01 .63±.02 .73±.01 .72±.02 .54±.03
CLKD-NLA .63±.01 .59±.02 .57±.02 .71±.01 .62±.02 .68±.02 .73±.03 .53±.04
promotion ↑ 9% ↑ 6% − ↑ 10% ↑ 4% ↑ 5% ↑ 10% ↑ 1%

and adding relation-wise supervision (i.e., the promotion of CLKD-w/o LA to CLKD-w/o LA-w/o RKD), it is
obvious that adding the relation-wise supervision achieves more improvements. Because instead of the specific
message representations, the key to recognising different messages is their relations. (3) On both the French and
Arabic datasets, the variants with the cross-lingual module perform best, verifying the merits of this approach.
On the French dataset, the variant with the linear cross-lingual module (CLKD-LLA) delivers the best result,
while, on the Arabic dataset, the variant with the non-linear cross-lingual module (CLKD-NLA) is the best. This
linear variant may have been better with French because the French-English language pair comes closer to an
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Table VI. Incremental evaluation AMIs on the French dataset. The underlined and bolded results represent the optimal
outcome.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

Word2Vec [50] .21±.00 .21±.00 .23±.00 .27±.00 .46±.00 .31±.00 .33±.00 .34±.00
BERT [23] .28±.00 .31±.00 .32±.00 .30±.00 .44±.00 .33±.00 .36±.00 .38±.00
LDA [8] .19±.00 .06±.00 .11±.00 .08±.00 .20±.00 .19±.00 .10±.00 .20±.00

PP-GCN [58] .48±.00 .44±.02 .55±.03 .54±.04 .53±.02 .50±.03 .55±.04 .55±.02
EventX [44] .11±.00 .12±.00 .11±.00 .14±.00 .24±.00 .15±.00 .12±.00 .21±.00
QSGNN [63] .56±.01 .57±.01 .56±.02 .57±.03 .59±.01 .59±.01 .63±.01 .55±.02
KPGNN [11] .54±.01 .55±.01 .55±.02 .55±.01 .57±.01 .57±.02 .61±.02 .57±.02

CLKD-w/o LA-w/o RKD .56±.00 .56±.01 .52±.02 .56±.01 .58±.02 .55±.02 .62±.02 .58±.02
CLKD-w/o LA .55±.02 .56±.02 .62±.02 .53±.01 .58±.02 .64±.02 .63±.02 .60±.02
CLKD-LLA .56±.02 .57±.00 .60±.02 .56±.03 .59±.02 .65±.01 .62±.02 .58±.02
CLKD-NLA .55±.01 .59±.02 .56±.01 .50±.02 .55±.01 .64±.02 .62±.02 .57±.01
promotion − ↑ 2% ↑ 6% ↓ 1% − ↑ 6% − ↑ 3%

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

Word2Vec [50] .30±.00 .42±.00 .38±.00 .37±.00 .20±.00 .34±.00 .38±.00 .25±.00
BERT [23] .28±.00 .35±.00 .34±.00 .44±.00 .26±.00 .40±.00 .39±.00 .27±.00
LDA [8] .12±.00 .11±.00 .18±.00 .25±.00 .17±.00 .21±.00 .30±.00 .02±.00

PP-GCN [58] .48±.03 .55±.04 .57±.02 .58±.02 .59±.02 .59±.01 .55±.03 .52±.02
EventX [44] .16±.00 .19±.00 .18±.00 .20±.00 .15±.00 .22±.00 .22±.00 .10±.00
QSGNN [63] .46±.02 .58±.01 .59±.02 .59±.02 .58±.03 .67±.02 .61±.00 .50±.03
KPGNN [11] .46±.02 .56±.02 .53±.01 .56±.02 .60±.02 .65±.00 .58±.02 .50±.01

CLKD-w/o LA-w/o RKD .49±.02 .63±.02 .57±.02 .59±.01 .64±.01 .72±.01 .61±.02 .50±.02
CLKD-w/o LA .52±.05 .61±.02 .57±.02 .67±.01 .62±.01 .71±.02 .66±.02 .50±.02
CLKD-LLA .49±.02 .60±.02 .58±.01 .68±.02 .63±.02 .72±.02 .68±.02 .51±.03
CLKD-NLA .58±.01 .57±.01 .55±.02 .66±.02 .60±.02 .69±.01 .70±.01 .52±.01
promotion ↑ 10% ↑ 5% ↓ 1% ↑ 9% ↑ 4% ↑ 5% ↑ 9% −

isomorphic assumption. In other words, their vector spaces have a more similar geometric structure. The opposite
is true of the English-Arabic pairs, so the non-linear variant is better suited to this task.

4.2.2 Incremental Evaluation. To create an online testing environment, we split the French and English datasets
by dates to construct two parallel social streams. The Arabic dataset is not included in this incremental experiment
because it is not collected based on a continuous period but, rather, on past catastrophic events in different time
periods. For both selected datasets (i.e., the English dataset and the French dataset), we use the messages of the
first week to form an initial message block𝑀0 and the messages from the remaining days to form the following
message blocks. Recall that the French data spans a period of 23 days, and the English spans 29 days, and the
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Table VII. Incremental evaluation ARIs on the French dataset. The underlined and bolded results represent the optimal
outcome.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

Word2Vec [50] .08±.00 .10±.00 .16±.00 .11±.00 .25±.00 .13±.00 .15±.00 .18±.00
BERT [23] .09±.00 .14±.00 .17±.00 .12±.00 .22±.00 .12±.00 .16±.00 .18±.00
LDA [8] .01±.00 .04±.00 .01±.00 .06±.00 .02±.00 .02±.00 .05±.00 .04±.00

PP-GCN [58] .27±.03 .21±.01 .38±.03 .35±.05 .30±.01 .27±.02 .38±.05 .38±.04
EventX [44] .01±.00 .01±.00 .01±.00 .01±.00 .03±.00 .01±.00 .01±.00 .02±.00
QSGNN [63] .30±.01 .38±.02 .36±.02 .36±.01 .36±.02 .36±.01 .38±.02 .35±.02
KPGNN [11] .29±.02 .37±.01 .39±.04 .36±.04 .37±.02 .35±.04 .37±.02 .38±.02

CLKD-w/o LA-w/o RKD .28±.04 .38±.04 .31±.01 .35±.03 .37±.02 .31±.02 .37±.02 .37±.03
CLKD-w/o LA .27±.01 .37±.01 .48±.02 .37±.03 .34±.02 .37±.02 .37±.04 .39±.01
CLKD-LLA .31±.02 .39±.02 .43±.03 .40±.04 .35±.03 .42±.02 .35±.04 .40±.03
CLKD-NLA .29±.02 .38±.03 .50±.05 .33±.03 .33±.04 .45±.02 .39±.02 .39±.02
promotion ↑ 1% ↑ 1% ↑ 11% ↑ 4% − ↑ 9% ↑ 1% ↑ 2%

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

Word2Vec [50] .10±.00 .20±.00 .13±.00 .19±.00 .07±.00 .17±.00 .20±.00 .11±.00
BERT [23] .10±.00 .13±.00 .10±.00 .24±.00 .08±.00 .18±.00 .17±.00 .11±.00
LDA [8] .01±.00 .02±.00 .03±.00 .05±.00 .01±.00 .03±.00 .10±.00 .01±.00

PP-GCN [58] .32±.04 .37±.04 .37±.04 .39±.03 .39±.01 .39±.06 .40±.06 .26±.03
EventX [44] .01±.00 .02±.00 .01±.00 .02±.00 .01±.00 .03±.00 .02±.00 .01±.00
QSGNN [63] .30±.04 .37±.02 .24±.03 .40±.04 .33±.03 .47±.03 .32±.02 .25±.02
KPGNN [11] .23±.02 .38±.02 .25±.02 .46±.02 .36±.05 .47±.03 .37±.02 .26±.02

CLKD-w/o LA-w/o RKD .27±.03 .45±.05 .24±.03 .44±.01 .38±.01 .58±.02 .44±.01 .22±.03
CLKD-w/o LA .35±.05 .39±.05 .25±.02 .58±.01 .39±.01 .54±.02 .53±.03 .20±.03
CLKD-LLA .30±.02 .37±.03 .24±.03 .52±.02 .36±.03 .60±.03 .59±.04 .22±.04
CLKD-NLA .42±.03 .33±.02 .28±.01 .60±.02 .40±.01 .50±.03 .57±.02 .22±.01
promotion ↑ 10% ↑ 7% ↓ 9% ↑ 14% ↑ 1% ↑ 13% ↑ 19% ↓ 4%

goal of the task is to detect events in the French message blocks 𝑀1, 𝑀2, ..., 𝑀16. The corresponding English
message blocks𝑀1, 𝑀2, ..., 𝑀16 act as assistants, and blocks𝑀17, 𝑀18, ..., 𝑀22 are treated as redundant data in this
incremental experiment.

As shown in Fig. 4(b) and described in Algo. 2, armed with mutual guidance, the two networks are updating in
a synchronous way. For the French network trained with message block𝑀𝑖 on the French dataset, its peer is the
network trained with the corresponding message block𝑀𝑖 on English data. Note that PP-GCN is an offline-only
method, so it is not directly applicable to this dynamic setting. Therefore, to form a proxy, we train a new PP-GCN
model from scratch for each message block, using the previous block as the training set and making predictions
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Fig. 7. Time Consumption. (We have added some specific values and adjusted the position of the legend.)

on the current block. As for QSGNN, we follow the same unsupervised training method as in the original paper,
i.e., first using the original model to generate quality-aware pseudo labels and then updating the model with
those generated labels every three blocks.
The results for the French dataset are summarized in Table V, VI, and VII (NMI, AMI, and ARI). The CLKD

framework yields better results than KPGNN and the other baselines in almost all message blocks, which
demonstrates the advantage of using English prior as a training assistant to low-resource languages. Further
analyzing the results, we can see that the linear or non-linear cross-lingual module performs best for most
message blocks. This is consistent with our observation in the offline experiments that adding the cross-lingual
module further improves the model performance. Meanwhile, we notice that a linear transformation is more
appropriate for English-French pairs, which is also consistent with our offline experimental results. For some
blocks, like𝑀9, a linear transformation is not the best choice. This is reasonable and acceptable because not every
language pair is fully isomorphic. Although French and English are very close, the pre-trained linear mapping is
likely to suit most cases but “most” does not mean “all”.

4.3 Time Consumption
To demonstrate that the proposed CLKD framework is practical and can be used for scalable training, we conduct
some time trials of the CLKD on the French dataset in an online setting. Fig. 7 shows the results. We use a mini-
batch sampling strategy during the training process, recording the time for one mini-batch. As the cross-lingual
language models are pre-trained, the transformed attribute features are obtained at the data processing stage.
Thus, the time consumption for the three variants with knowledge distillation is the same. The time consumption
of CLKD-w/o LA-w/o RKD is used to represent the time needed for all three variants and the time consumption
of CLKD is the total time consumption for the whole framework. For a more intuitive comparison, we also record
the time KPGNN needed to process a single French message block and its corresponding English message block,
denoted as KPGNN-Fr and KPGNN-En, respectively. As shown in Fig. 7 and consistent with the time complexity
analysis in Section 3.5, the time needed for the CLKD framework to process the combined data stream is almost
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(a) Word2Vec (b) Bert (c) PP-GCN

(d) KPGNN (e) QSGNN (f) CLKD-w/o-LA

(g) CLKD-LLA (h) CLKD-NLA

Fig. 8. Visualization of the learned message representations on the Arabic dataset.

equal to the sum of KPGNN-Fr and KPGNN-En. Moreover, as discussed in Section 3.4, we only use the newest
message block data for training in the maintenance stage. Hence, obsolete nodes are deleted and the training
regime stays light. Overall, these results prove that the CLKD framework can be used for scalable training.

4.4 Visualization
To give a more intuitive comparison, and to further show the extent to which knowledge distillation and the
cross-lingual module help the event detection process, we prepare a visualization of the Arabic Twitter dataset.
For this, we plot the representations of the test set using t-SNE [73] using calculated message embeddings from
Word2Vec and BERT; the output embeddings from the last layer of PP-GCN, KPGNN, and QSGNN; and the same
from our variants with knowledge distillation, i.e., CLKD-w/o LA, CLKD-LLA, and CLKD-NLA. The results are
shown in Fig. 8. Noticed that in the Arabic Twitter dataset, there are 7 catastrophic events in total: the Jordan
floods, Kuwait floods-18, Hafr Albatin floods-19, the Cairo bombing, the Dragon storms, the Beirut explosion, and
Covid-19. Each color in Fig. 8 represents an event. Comparing Fig. 8(a) and (b) with (c), (d), and (e), it is obvious
that the results are worse in (a) and (b). Thus, we conclude that GNN-based methods are better than the methods
that rely purely on learning message representations, i.e., Word2Vec and BERT. As explained, this is largely
due to the expressive power of GNNs in capturing structural information and rich semantics at the same time.
Meanwhile, if we compare Fig. 8(d) with (e), it is obvious that inter-class representations learned by QSGNN
are better split than the ones in KPGNN. That is because QSGNN adds a stricter inter-class distance demand as
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Fig. 9. Analysis of 𝜆1 in the offline situation. (a), (b), (c) show the results on the Arabic dataset; and (d), (e), (f) show the
results on the French dataset.
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Fig. 10. Analysis of 𝜆2 in the offline situation. (a), (b), (c) show the results on the Arabic dataset; and (d), (e), (f) show the
results on the French dataset.
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Fig. 11. Analysis of 𝜆1 in the online situation. Noticed that the x-axis denotes message block index. (a), (b), and (c) show
the results of the CLKD-w/o LA variant, CLKD-LLA variant, and CLKD-NLA variant on the French dataset in an incremental
setting, respectively.

well as an orthogonal constraint in inter-class feature direction. Comparing Fig. 8(d) with (f), (g), and (h), we
can see that the three variants that learn with prior knowledge do better. This demonstrates the effectiveness of
knowledge distillation. What’s more, the variants that incorporate the cross-lingual module, Fig. 8 (f) and (g),
even have more distinct boundaries than (e) (i.e., the powerful QSGNN model), which speaks to the importance
of the cross-lingual module. In essence, the cross-lingual feature-wise and beneficial relation-wise supervision
from the teacher can also be seen as adding stricter distance constraints to inter-class and intra-class pairs.
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(c) CLKD-NLA

2

0.1
0.5

1.0

me
ss
ag
e 
bl
oc
k 
in
de
x

2
4
6
8
10
12
14

AR
I

0.18
0.28
0.38
0.48
0.58
0.68
0.78

Fig. 12. Analysis of 𝜆2 in the online situation. Noticed that the x-axis denotes message block index. (a), (b), and (c) show
the results of the CLKD-w/o LA variant, CLKD-LLA variant, and CLKD-NLA variant on the French dataset in an incremental
setting, respectively.

4.5 Hyper-parameter Analysis
Analysis of the weight of feature-wise knowledge distillation loss 𝜆1. Note that 𝜆1 and 𝜆2 are the most
important hyper-parameters to tune in the objective function of the CLKD framework. Fig. 9(a), (b), and (c)
demonstrate how the performance of the CLKD framework (Teacher-Student) is affected by the choice of 𝜆1 on
the Arabic dataset in the offline situation, and Fig. 9(d), (e), and (f) show the performance on the French dataset.
We validate different values of 𝜆1 ranging from 0.1 to 1.0 ({0.1, 0.5, 1.0}), noting that the choice of 𝜆1 determines to
which degree the student’s learning features are affected by the teacher’s. With a large value, the feature-wise
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(b) CLKD-LLA
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(c) CLKD-NLA

window size

1
3

5

me
ss
ag
e 
bl
oc
k 
in
de
x

2
4
6
8
10
12
14

AR
I

0.19

0.29

0.39

0.49

0.59

0.69

Fig. 13. Analysis of𝑤 in the online situation. (a), (b), and (c) show the results of the CLKD-w/o LA variant, CLKD-LLA
variant, and CLKD-NLA variant on the French dataset in an incremental setting respectively.

Knowledge distillation loss will play a more important role, which means representations learned by students
are forced to be more similar to the teachers. Considering the pre-trained teacher network with a cross-lingual
module has been validated to gain great results in detecting events from student language data, therefore, a
relatively large weight can be chosen in offline situations. We set 𝜆1 to 0.5. This is also borne out in the result
that the model achieves the best results when 𝜆1 is set to 0.5. For example, on the French dataset, when 𝜆1 = 0.5,
with 0.71 NMI, 0.66 AMI, and 0.43 ARI, CLKD-LLA provides the best performance. On the Arabic dataset, the
same is true but of CLKD-NLA, with 0.81 NMI, 0.81 AMI, and 0.84 ARI. However, regarding CLKD-w/o LA,
larger 𝜆1 brings worse results on the Arabic dataset. This is reasonable since CLKD-w/o LA has not considered
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cross-lingual bias. Thus blindly making the representations of the teacher and students similar may hinder the
model training. Fig. 11 shows the results for the French dataset in a mutual learning scheme with varying 𝜆1. As
shown in Fig. 11, for most message blocks, the choice of 𝜆1 doesn’t make much difference to the NMI, AMI, and
ARI results. The three lines basically coincide. Hence, we can conclude that the CKLD framework in the mutual
learning structure shows robust performance at all the selected 𝜆1 values on the French dataset.
Analysis of the weight of relation-wise knowledge distillation loss 𝜆2. Similar to 𝜆1, we also choose

the value of 𝜆2 from {0.1, 0.5, 1.0} and plot the results in Fig. 10 and Fig. 12. Specifically, Fig. 10(a), (b), and (c)
demonstrate how the performance of the CLKD framework (Teacher-Student) is affected by the choice of 𝜆2 on
the Arabic dataset and (d), (e) and (f) show the performance on the French dataset. As can be seen from the figure,
the model with small 𝜆2 gains better results. For example, on the Arabic dataset, when 𝜆2 is set to 0.1, CLKD-NLA
performs best with 0.81 NMI, 0.81 AMI, and 0.84 ARI. The performance of the model on French data shows a
similar pattern. With 0.71 NMI, 0.66 AMI, and 0.43 ARI, CLKD-LLA achieves the best results when 𝜆2 is set to 0.1.
However, setting 𝜆2 to a large value (i.e., 𝜆2 = 1) will decrease the model performance. As aforementioned, adding
relation-wise knowledge distillation can also be seen as adding a stricter distance constraint to the inter-class and
intra-class pairs. When 𝜆2 is large, the model may focus too much on the hardest positive and negative samples,
resulting in bad local minima. As for the online situation, Fig. 11 shows the results for the French dataset with
varying 𝜆2. Still, for most message blocks, the choice of 𝜆2 doesn’t make much difference to the final results. This
validates that the Mutual-Learning structure is more insensitive to parameter 𝜆2.

Analysis of the maintaining window size𝑤 .𝑤 determines the model update frequency when dealing with
online social streams. Fig. 13 charts CLKD’s performance in the Mutual-Learning structure with different sizes of
𝑤 . Generally, performance is better with a small𝑤 , such as𝑤 = 1 and𝑤 = 3. For example, with window sizes
𝑤 = 1, 3, 5, the average NMI results of CLKD-LLA are 0.64, 0.63, and 0.62, respectively. That is because smaller𝑤
means more frequent model updates. Specifically, when𝑤 = 1, the model is updated in each message block by
continuously training with the current block data. In this way, the model is fully adapted to the social stream data.
However, a small𝑤 also requires more training time. For a good balance between performance and efficiency, we
select𝑤 = 3 in our experiments.

5 EXTENSION,IMPLICATION AND LIMITATION
In this section, we test the CLKD framework on other pre-trained language models and discuss its limitations.

Extension of CLKD to other pre-trained language models, graph neural network encoders and cross-
lingual mappings: Note that in the above experiments, the initial representations of messages are obtained
by GloVe [62], and the cross-lingual module (i.e., the linear mapping model MUSE and the non-linear mapping
LNMAP) is also trained by the word embeddings learned from GloVe. Here we test another static pre-trained
language model fastText [9]. Specifically, we use the open-source pre-trained 300-d language models7 trained
on Common Crawl and Wikipedia using fastText to learn message representations and language mappings. We
record the offline evaluation on French and Arabic datasets (see Table. VIII) and the online evaluation on French
dataset (see Table. IX, X, and XI). Similarly, our CLKD framework with linear or non-linear language mappings
learned from fastText also obtains the best results, which validates the robustness of our CLKD framework.
However, carefully watching the promotions by distilling only point-wise information (CLKD-w/o LA-w/o RKD)
to the original KPGNN, we find that using the representations learned from Glove achieves more improvements.
That may be because the learning process of Glove focuses more on word pair relations. Thus the calculated
point-wise representation contains richer knowledge.

It is also essential to emphasize that while the proposed Cross-Lingual Knowledge Distillation (CLKD) frame-
work utilizes established components like the pre-existing KPGNN network structure and cross-lingual mappings

7https://fasttext.cc/docs/en/crawl-vectors.html
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such as MUSE and LNMAP, its core innovation lies in integrating and extending these components with novel
distillation techniques. These techniques include cross-lingual feature-wise distillation and selective relation-wise
distillation, alongside experimental validations. The KPGNN encoder employed in the CLKD serves primarily an
illustrative purpose. To demonstrate the versatility and robustness of the CLKD framework, we conduct extensive
experiments by substituting the specific GNN encoder in KPGNN with a temporal-aware graph neural network
encoder from another study, as cited in [64]. The results, shown in Table XII, reveal that incorporating a GNN
encoder that integrates temporal data further improves event detection, especially in the Arabic dataset, where
events span various periods. Note that in all versions of CLKD listed in Table XII, the temporal GNN encoder is
utilized. The enhanced performance of the complete CLKD framework with the alternative temporal-aware GNN
encoder (i.e., CLKD-LLA, CLKD-NLA), as compared to the vanilla versions (i.e., CLKD-w/o LA-w/o RKD, CLKD-
w/o LA), underscores the effectiveness of the proposed feature-wise and relation-wise distillation techniques
in CLKD. Furthermore, to demonstrate the scalability of our CLKD framework, we also evaluate it using other
cross-lingual mappings such as VecMap [4], in place of MUSE and LNMAP. The comparison of different mapping
strategies, presented in Table XIII, shows that employing VecMap for cross-lingual transformation within the
CLKD framework also improves detection capabilities compared to the version without language alignment (i.e.,
CLKD-w/o LA), further affirming the scalability and effectiveness of the CLKD framework.

The implication of CLKD: This work proposes the Cross-Lingual Knowledge Distillation (CLKD) framework
to address social event detection problems in low-resource languages. By combining cross-lingual transformation
techniques with knowledge distillation, our framework successfully achieves cross-lingual transfer learning and
greatly strengthens detection models in low-resource languages. This approach has broader implications beyond
event detection and can improve other natural language processing applications, such as sentiment analysis and
question answering systems, in settings where data scarcity is a concern. Overall, our CLKD framework offers a
promising solution for enhancing NLP tasks in low-resource language environments.

The limitation of CLKD: Here we acknowledge the limitation of our CLKD framework. Certainly, assuming
a universal distribution of events across all languages may not universally hold true due to cultural disparities.
However, despite this challenge, valuable insights can still be gained. Many human behaviors are indeed universal
across different countries, allowing for useful cross-lingual knowledge extraction to enhance each other for
many language pairs. For instance, our experiments with English-French and English-Arabic pairs demonstrate
tangible benefits in distilled event detection knowledge. As shown in Table II, directly inputting French and Arabic
datasets into the detection model trained on the English dataset yields NMI scores of 0.50±0.01 and 0.39±0.01,
respectively. In regions with limited cultural, historical, and economic similarities, CLKD may not perform
optimally. Conducting experiments with validation data beforehand may provide insights into its effectiveness in
those language pairs. Specifically, applying a high-resource language-trained model (e.g., the English-trained
model) directly to detect events in other languages offers a preliminary assessment of its potential efficacy. We
can then adjust the distillation language pairs based on this assessment. This pragmatic approach facilitates
practical evaluation and adjustment based on real-world performance, ensuring adaptability and refinement in
cross-lingual event detection. Another potential limitation of this work is the challenge of ensuring high-quality
cross-language conversions. Note that most cross-lingual transformation studies assume that languages share
similar underlying structures and semantics. However, languages can exhibit significant divergence in syntax,
vocabulary, and cultural context. This language divergence can limit the effectiveness of transferring knowledge
from high-resource to low-resource languages, especially when the languages in question are vastly different.
Non-linear language alignment techniques can partially address this issue, but they still cannot guarantee
high-quality transformations for significantly different languages.
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Table VIII. Offline Evaluation on French and Arabic datasets using representations and language mappings learned from
fastText.

Methods
French Data Arabic Data

NMI AMI ARI NMI AMI ARI
KPGNN [11] .63±.02 .59±.01 .28±.03 .76±.01 .74±.02 .76±.02

CLKD-w/o LA-w/o RKD .63±.01 .60±.01 .28±.02 .76±.03 .75±.02 .77±.03
CLKD-w/o LA .66±.04 .63±.03 .35±.04 .78±.02 .79±.02 .79±.02
CLKD-LLA .70±.02 .65±.01 .39 ±.02 .80±.03 .81±.03 .81±.03
CLKD-NLA .70±.02 .64±.01 .38±.02 .81±.02 .80±.02 .83±.02

Table IX. Incremental evaluation NMIs on the French dataset using representations and language mappings learned from
fastText.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

KPGNN [11] .55±.01 .55±.02 .54±.02 .56±.02 .58±.02 .60±.02 .63±.02 .59±.02
CLKD-w/o LA-w/o RKD .54±.01 .56±.01 .54±.02 .56±.02 .60±.02 .60±.03 .63±.02 .60±.01

CLKD-w/o LA .56±.02 .57±.02 .57±.03 .57±.03 .60±.02 .61±.02 .64±.02 .60±.01
CLKD-LLA .58±.02 .58±.01 .62±.01 .57±.02 .62±.02 .64±.02 .64±.02 .61±.02
CLKD-NLA .57±.02 .58±.02 .60±.02 .56±.03 .61±.02 .65±.02 .63±.02 .62±.02

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

KPGNN [11] .47±.02 .59±.02 .57±.02 .56±.03 .60±.02 .66±.02 .61±.01 .53±.02
CLKD-w/o LA-w/o RKD .50±.02 .60±.02 .57±.01 .61±.01 .63±.01 67±.02 .62±.02 .52±.02

CLKD-w/o LA .51±.02 .62±.02 .58±.02 .64±.01 .63±.01 69±.02 .65±.02 .50±.02
CLKD-LLA .53±.02 .63±.02 .59±.02 .67±.01 .67±.02 .71±.01 .70±.02 .54±.02
CLKD-NLA .55±.02 .63±.02 .58±.02 .68±.01 .64±.03 .68±.02 .71±.02 .53±.04

6 RELATED WORK
Social Event Detection. According to survey [33], based on their objectives, social event detection can be
broadly categorized as either feature-pivot (FP) [27] or document-pivot (DP) [81] methods. When separated by
the techniques they use, social event detection methods can be divided into incremental clustering [1, 38, 54, 85],
community detection [25, 44–46, 69, 84] and topic modeling [7, 16, 20, 59, 89]. More recently, with the great
success of Graph Neural Networks [47], there has been a move towards GNN-based social event detection [11, 21,
58, 60, 61, 64]. Peng et al. [58] use Graph Convolutional Network as their event categorization model. Ren et al.
[64] incorporate temporal information into the message-passing scheme of GNN and propose ETGNN. To further
extend ETGNN to imbalanced social event detection tasks, they design an uncertainty-guided contrastive loss [65]
to regulate the representation learning of GNN. However, the methods mentioned above are only applicable to
closed-set settings. Scaling to incremental setting, Cao et al. [11] leverage inductive GNNs to extract information.
Further, Peng et al. [61] extend the GNN encoder in [11] by using reinforcement learning techniques to assign
different thresholds for different relations. Later, Cao et al. [12] approach the social event detection task from a
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Table X. Incremental evaluation AMIs on the French dataset using representations and language mappings learned from
fastText.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

KPGNN [11] .54±.02 .54±.01 .54±.02 .56±.01 .57±.01 .57±.02 .62±.02 .58±.02
CLKD-w/o LA-w/o RKD .55±.00 .55±.01 .55±.02 .56±.01 .57±.02 .56±.02 .62±.02 .57±.02

CLKD-w/o LA .55±.02 .56±.02 .57±.02 .55±.01 .58±.02 .59±.02 .63±.02 .58±.02
CLKD-LLA .56±.02 .57±.00 .59±.02 .57±.03 .59±.02 .62±.02 .62±.02 .59±.02
CLKD-NLA .56±.01 .58±.02 .58±.01 .55±.03 .58±.01 .61±.02 .62±.02 .61±.02

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

KPGNN [11] .46±.03 .58±.02 .55±.01 .55±.04 .59±.02 .65±.02 .60±.01 .52±.02
CLKD-w/o LA-w/o RKD .50±.02 .59±.02 .56±.02 .58±.01 .61±.02 66±.02 .61±.02 .51±.02

CLKD-w/o LA .51±.02 .61±.02 .58±.02 .62±.01 .62±.01 68±.02 .64±.02 .51±.02
CLKD-LLA .54±.01 .62±.02 .60±.02 .66±.01 .63±.02 .70±.02 .69±.02 .53±.03
CLKD-NLA .55±.01 .61±.02 .59±.02 .66±.01 .62±.02 .68±.02 .70±.02 .53±.03

Table XI. Incremental evaluation ARIs on the French dataset using representations and language mappings learned from
fastText.

Blocks 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7 𝑀8

KPGNN [11] .29±.02 .37±.02 .40±.02 .37±.04 .36±.02 .36±.04 .38±.02 .38±.02
CLKD-w/o LA-w/o RKD .29±.03 .38±.04 .36±.03 .36±.03 .36±.02 .33±.03 .37±.02 .38±.02

CLKD-w/o LA .29±.01 .39±.02 .41±.02 .37±.03 .37±.02 .35±.02 .38±.03 .39±.01
CLKD-LLA .31±.02 .39±.02 .43±.03 .40±.04 .35±.03 .42±.02 .37±.04 .40±.03
CLKD-NLA .30±.02 .40±.05 .45±.04 .36±.03 .36±.04 .45±.02 .39±.02 .39±.02

Blocks 𝑀9 𝑀10 𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

KPGNN [11] .24±.02 .39±.02 .27±.02 .49±.02 .33±.05 .48±.03 .36±.02 .24±.02
CLKD-w/o LA-w/o RKD .27±.03 .40±.05 .24±.03 .47±.03 .34±.01 .50±.02 .43±.01 .22±.03

CLKD-w/o LA .35±.05 .39±.05 .25±.02 .52±.01 .36±.01 .54±.02 .49±.05 .23±.04
CLKD-LLA .39±.04 .41±.03 .28±.04 .56±.02 .39±.03 .58±.03 .57±.04 .25±.04
CLKD-NLA .40±.04 .41±.04 .27±.01 .60±.02 .38±.01 .57±.04 .56±.02 .25±.03

novel perspective by fully exploring message correlations through graph structure entropy minimization. Li et
al. [43] propose a multi-relational prompt-based pairwise message learning mechanism to simultaneously utilize
structural and content information. Compared to early studies, GNN-based methods show their superiority in
knowledge acquisition and preservation. However, although GNN-based models achieve fairly high accuracy,
their application to date has been heavily restricted to high-resource monolingual data – especially English.
Only a few works focus on non-English languages. For example, in [48], a french corpus is annotated for event
detection tasks. In [6], SVM is adopted for detection on an Indian dataset. There is still no effective deep learning
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Table XII. Offline Evaluation on French and Arabic datasets using the Temporal-aware GNN encoder.

Methods
French Data Arabic Data

NMI AMI ARI NMI AMI ARI
KPGNN [11] .63±.02 .59±.01 .28±.03 .76±.01 .74±.02 .76±.02

Temporal-aware GNN .66±.03 .61±.02 .32±.02 83±.02 .79±.02 .84±.02
CLKD-w/o LA-w/o RKD .65±.02 .62±.02 .33±.02 .83±.03 .80±.02 .84±.02

CLKD-w/o LA .70±.02 .63±.03 .36±.02 .84±.02 .81±.02 .84±.03
CLKD-LLA .72±.02 .68±.01 .41 ±.03 .85±.03 .84±.02 .84±.03
CLKD-NLA .71±.02 .67±.02 .39±.03 .87±.02 .86±.02 .87±.02

Table XIII. Offline Evaluation on French and Arabic datasets using different cross-lingual mappings.

Methods
French Data Arabic Data

NMI AMI ARI NMI AMI ARI
CLKD-w/o LA .66±.04 .63±.03 .35±.04 .78±.02 .79±.02 .79±.02

CLKD (with MUSE) .70±.02 .65±.01 .39 ±.02 .80±.03 .81±.03 .81±.03
CLKD (with LNMAP) .70±.02 .64±.01 .38±.02 .81±.02 .80±.02 .83±.02
CLKD (with VecMap) .72±.02 .65±.01 .40±.03 .80±.01 .80±.02 .82±.02

framework generalized for event detection tasks with any low-resource languages. Also, existing multilingual
event detection methods [46] are not capable of fully utilizing the rich information in social streams. Hence, in
this work, we propose a novel multilingual social graph construction strategy that makes GNN models compatible
with multilingual social media data and propose the CLKD framework for segment detection for low-resource
languages.
Knowledge Distillation. Knowledge distillation is initially adopted for model compression [10], to learn a

compact student model from a larger teacher model [35] by letting the student imitate the output of the teacher.
Two key factors here are what knowledge to learn and how to effectively transfer it. Regarding the former,
popular supervision extracted from the teacher includes the forms of class posterior probabilities [35], feature
representations [5, 66], and inter-layer flows (the inner product of feature maps) [82]. As for the knowledge
transfer process, to penalize the difference between student and teacher, the distillation loss can be considered as
cross-entropy loss, Kullback-Leibler (KL) divergence loss, etc. Noticed that classical Teacher-Student distillation
methods follow an offline training strategy that involves two phases of training. Zhang et al. [87] overcome this
limitation with a one-phase online training regime that distils knowledge between two student models acting as
peers to each other. Recently, there has been a rising interest in cross-modality knowledge distillation which
transfers supervision across modalities, see [31, 40, 70]. Li et al. [40] devise a mutual knowledge distillation scheme
that exploits prior knowledge learned from a source modality to improve the performance in the target modality
- the goal being to overcome annotation scarcity. We share a similar philosophy but treat different languages
as different modalities. Due to its strong capability in transferring knowledge, knowledge distillation has also
been widely adopted in applications in the natural language processing (NLP) domain [13, 32, 55]. For instance,
Gupta et al. [32] adopt knowledge distillation approaches to train Answer Sentence Selection (AS2) models for
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low-resource languages. Zheng et al. [13] utilize the "dark knowledge" acquired from large teacher models and
adaptive hints to address domain differences between teacher and student models. Their approach achieves
successful application in Question Answering (QA) systems. Pan et al. [55] introduce Meta-KD, a framework
for meta knowledge distillation designed for compressing language models. Besides, given the recent success of
self-supervised learning, which allows models to learn from extensive unlabeled data by generating substitute
supervisory signals, a series of studies have integrated self-supervised learning into the knowledge distillation
process [14, 88]. For example, Chen et al. [14] propose a stratified distillation strategy to address bias in knowledge
distillation that comes from teacher-provided soft labels. This method partitions items into multiple groups
based on popularity and extracts ranking knowledge within each group. Zheng et al. [88] develop a cross-level
knowledge distillation approach to tackle cross-domain few-shot classification by incorporating a small portion
of unlabeled images from the target domain during training. More recently, with the development of GNN, a
series of methods [26, 80] have applied knowledge distillation on GNNs to achieve high efficiency. They distil
graph knowledge extracted by high-capacity teacher GNN models to lightweight students via penalizing soft
logit differences between teachers and students. Xia et al. [78] further consider the over-smoothing problem of
GNN and adopt representation recalibration to address it. Later, considering GNNs are often shallow, Wang et al.
[75] propose a novel multi-teacher KD method to learn combined knowledge from multiple teachers in a parallel
way. Guo et al. [30] instead propose BGNN which also transfers knowledge from multiple GNNs into a student
GNN but in a sequential way. Unlike these methods which focus on extracting complementary knowledge from
multiple teachers, our CLKD framework prioritizes the maximum utilization of knowledge from a single teacher
GNN, making it a more cost-effective approach.
Relational-Knowledge based methods. Unlike classical knowledge distillation methods which transfer

point-wise information such as soft logits, feature representations and so on, a group of methods instead explore
relational knowledge. These approaches [28, 56, 71, 76], also named relation distillation, attempt to extract higher-
order structure information from the teacher’s output space. For example, Park et al. [56] simultaneously compare
both angle-wise and distance-wise relations between features. In [72], it has been observed that semantically
similar inputs tend to elicit similar activation patterns. Therefore, a similarity-preserving knowledge distillation
method is designed. It demands the student to preserve the pairwise similarities instead of simply mimicking
original features from the teacher. Peng et al. [57] further expand pair-wise similarities to correlations among
multiple instances and propose a correlation congruence knowledge distillation method. In recent years, it is
worth noting that relational knowledge distillation has been widely employed in both the computer vision
domain and natural language domain. Work [39] utilizes cluster methods to learn visual word vocabulary and
leverages this vocabulary to quantize each location of feature maps. Work [24] proposes a hierarchical relational
knowledge distillation to compress pre-trained language models. Inspired by the effectiveness of relational
knowledge distillation, we design a hybrid knowledge distillation method which considers both point-wise and
relation-wise information. Meanwhile, considering the existence of many improper relations made by the teacher,
when transferring relation-wise information, we only distil beneficial relational knowledge.

Cross-Lingual Word Embeddings. Cross-Lingual Word Embeddings (CLWE) methods learn a shared word
vector space, where words with similar meanings result in similar vectors regardless of the language they are
originally expressed in. Early CLWE methods have been dominated by projection-based methods [51]. These
approaches learn a linear projection by minimizing the distance between translation pairs in a training dictionary.
The requirement of dictionary is later reduced with self-learning [3], and then removed via unsupervised
initialization heuristics [4, 37] and adversarial learning [42, 86]. Almost all these methods inherently assume
that the embedding spaces of the different languages are approximately isomorphic, i.e., that they are similar in
geometric structure. However, this simplified assumption has been questioned by researchers recently. [53, 68]
attribute the performance degradation of existing CLWE methods to the strong mismatches in embedding spaces
caused by the linguistic and domain divergences. Due to this, Mohiuddin et al. [52] propose a novel non-linear
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CLWE method based on two auto-encoders. In this work, we pay attention to the use of proper transformations
between language pairs in social event detection tasks.

7 CONCLUSION
In this study, we focus on social event detection in low-resource languages. We have devised a novel cross-lingual
knowledge distillation framework (CLKD) to borrow prior knowledge learned from the high-resource English
language. Specifically, to extract more comprehensive information, the distillation contains both feature-wise and
relation-wise parts. Furthermore, during feature-wise knowledge transfer, an additional cross-lingual module is
combined to eliminate language bias. As for transferring relation-wise knowledge, we carefully select beneficial
relations to avoid distraction caused by misjudgments made by the teacher. The merits of this approach are
demonstrated in experiments with several real datasets. A particularly interesting future research direction would
be cross-lingual event propagation.
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